4 research outputs found

    Коды в диэдральной групповой алгебре

    Get PDF
    Robert McEliece developed an asymmetric encryption algorithm based on the use of binary Goppa codes in 1978 and no effective key attacks has been described yet. Variants of this cryptosystem are known due to the use of different codes types, but most of them were proven to be less secure. Code cryptosystems are considered an alternate to number-theoretical ones in connection with the development of quantum computing. So, the new classes of error-correcting codes are required for building new resistant code cryptosystems. Non-commutative codes, which simply are ideals of finite non-commutative group algebras, are an option. The Artin–Wedderburn theorem implies that a group algebra is isomorphic to a finite direct sum of matrix algebras, when the order of the group and the field characteristics are relatively prime. This theorem is important to study the structure of a non-commutative code, but it gives no information about summands and the isomorphism. In case of a dihedral group these summands and the isomorphism were found by F. E. Brochero Martinez. The purpose of the paper is to study codes in dihedral group algebras as and when the order of a group and a field characteristics are relatively prime. Using the result of F. E. Brochero Martinez, we consider a structure of all dihedral codes in this case and the codes induced by cyclic subgroup codes.В 1978 году Р.Мак-Элисом построена первая асимметричная кодовая криптосистема, основанная на применении помехоустойчивых кодов Гоппы, при этом эффективные атаки на секретный ключ этой криптосистемы до сих пор не найдены. К настоящему врмени известно достаточно много кодовых криптосистем, но их криптографическая стойкость уступает стойкости классической криптосистемы Мак-Элиса. В связи с развитием квантовых вычислений кодовые криптосистемы рассматриваются как альтернатива теоретико-числовым, поэтому актуальной представляется задача поиска перспективных классов кодов для построения новых стойких кодовых криптосистем. Для этого можно использовать некоммутативные коды, т.е. идеалы в групповых алгебрах FqG над конечными некоммутативными группами G. Ранее изучалась стойкость криптосистем на кодах, индуцированных кодами на подгруппах. Важной для исследования некоммутативных кодов является теорема Веддерберна, доказывающая существование изоморфизма групповой алгебры на прямую сумму матричных алгебр, но конкретный вид слагаемых и конструкция изоморфизма этой теоремой не определены, и поэтому для каждой группы остается задача построения представления Веддерберна. Ф.Е.Б. Мартинесом получено полное представление Веддерберна для групповой алгебры FqD2n над диэдральной группой D2n в случае, когда мощность поля и порядок группы взаимно просты. С использованием этих результатов в настоящей работе исследуются коды в групповой алгебре FqD2n. Решена задача о структуре всех кодов и описана структура кодов, которые индуцированы кодами над циклическими подгруппами группы D2n, что представляет интерес для криптографических приложений

    Быстрое вычисление циклических сверток и их приложения в кодовых схемах асимметричного шифрования

    Get PDF
    The development of fast algorithms for key generation, encryption and decryption not only increases the efficiency of related operations. Such fast algorithms, for example, for asymmetric cryptosystems on quasi-cyclic codes, make it possible to experimentally study the dependence of decoding failure rate on code parameters for small security levels and to extrapolate these results to large values of security levels. In this article, we explore efficient cyclic convolution algorithms, specifically designed, among other things, for use in encoding and decoding algorithms for quasi-cyclic LDPC and MDPC codes. Corresponding convolutions operate on binary vectors, which can be either sparse or dense. The proposed algorithms achieve high speed by compactly storing sparse vectors, using hardware-supported XOR instructions, and replacing modulo operations with specialized loop transformations. These fast algorithms have potential applications not only in cryptography, but also in other areas where convolutions are used.Разработка быстрых алгоритмов генерации ключей, шифрования и дешифрования не только повышает эффективность соответствующих операций. Такие быстрые алгоритмы, например, для асимметричных криптосистем на квазициклических кодах, позволяют экспериментально исследовать зависимость вероятности ошибочного расшифрования от параметров кода для малых параметров безопасности и экстраполировать эти результаты на большие значения параметров безопасности. В этой статье мы исследуем эффективные алгоритмы циклической свертки, специально разработанные, в том числе, для использования в алгоритмах кодирования и декодирования квазициклических LDPC и MDPC кодов. Соответствующие свертки работают с двоичными векторами, которые могут быть как разреженными, так и плотными. Предлагаемые алгоритмы достигают высокой скорости за счет компактного хранения разреженных векторов, использования аппаратно поддерживаемых инструкций XOR и замены операций по модулю специализированными преобразованиями цикла. Эти быстрые алгоритмы имеют потенциальное применение не только в криптографии, но и в других областях, где используются свертки

    Codes in Dihedral Group Algebra

    No full text
    Robert McEliece developed an asymmetric encryption algorithm based on the use of binary Goppa codes in 1978 and no effective key attacks has been described yet. Variants of this cryptosystem are known due to the use of different codes types, but most of them were proven to be less secure. Code cryptosystems are considered an alternate to number-theoretical ones in connection with the development of quantum computing. So, the new classes of error-correcting codes are required for building new resistant code cryptosystems. Non-commutative codes, which simply are ideals of finite non-commutative group algebras, are an option. The Artin–Wedderburn theorem implies that a group algebra is isomorphic to a finite direct sum of matrix algebras, when the order of the group and the field characteristics are relatively prime. This theorem is important to study the structure of a non-commutative code, but it gives no information about summands and the isomorphism. In case of a dihedral group these summands and the isomorphism were found by F. E. Brochero Martinez. The purpose of the paper is to study codes in dihedral group algebras as and when the order of a group and a field characteristics are relatively prime. Using the result of F. E. Brochero Martinez, we consider a structure of all dihedral codes in this case and the codes induced by cyclic subgroup codes
    corecore